NSF Arabidopsis 2010:

Functional Analysis of the SABATH Family of Methyltransferases

 

 

Project Summary

The Arabidopsis thaliana genome contains 24 related genes that encode methyltransferase enzymes (MTs) distinct from any other known MTs. One MT from this group has been shown to convert jasmonic acid, an important plant hormone, into the jasmonate methyl ester, thereby changing the activity of the hormone in significant ways. Preliminary experiments suggest that the other 23 MTs of this group convert several important hormones and other plant constituents into the methyl esters, thereby exerting important effects on the biological activity of these molecules and consequently on amyriad of important physiological processes. The aim of the project is to identify the function of all the MTs of this group (i.e., which compound each of them methylates) by a combination of methods that involve genetics, enzymology, protein structure determination, and analytical chemistry. The consequences of the methylation of such hormonal molecules on the physiology of the plant will be examined in selected cases, which may include processes involving plant response to pathogens, drought conditions, and herbivory. The results are expected to provide a better understanding of plant responses to environmental conditions, thus helping improve crop yield and nutritional value. In addition, by developing methodologies for determining which Arabidopsis genes are involved in the synthesis of the plantís diverse repetoire of small molecules, the project will contribute to the elucidation of the function of other Arabidopsis genes involved in hitherto unknown biochemical pathways. The project will also provide interdisciplinary opportunities for training undergraduates, graduates, and post-docs.


Last updated on September 1, 2008